Facial recognition technology for next-generation fish-count surveys

In the latest generation of the CAM-Trawl system developed by the Fish Management Acquisition (FMA) program, ADL worked with NMFS Alaska Fisheries Science Center making key improvements to the computer portion of the CAM-Trawl system, including higher compute performance, standards-based vision software, more rugged enclosure and user-friendly LED indicators.


This article is contributed by ADL          Download PDF version of this article


The conservation and management of fish stocks relies heavily on fish-count surveys. In an effort to improve the shortcomings of these surveys, NOAA (National Oceanic and Atmospheric Administration) and its National Marine Fisheries Service (NMFS) developed a camera-based trawl (CAM-Trawl) to bring the power of image capture and facial recognition technology to best address this problem. The Alaska Fisheries Science Center is the research branch of the National Oceanic and Atmospheric Administration National Marine Fisheries Service responsible for research on living marine resources in the coastal oceans off Alaska and parts of the West Coast of the United States. This region of nearly 3 million square miles includes the North Pacific Ocean and the East Bering Sea which support some of the most important commercial fisheries in the world. These waters are also home to the largest marine mammal populations in the nation.

The conservation and management of fish stocks relies heavily on fish-count surveys. Traditionally, this has been done through the use of fishing trawlers set up to do acoustic or bottom trawling which cast enormous nets into the sea to capture as many fish as possible over a specified area. These fish are then brought on-board and manually counted to develop the trawl survey. This methodology suffers from a number of shortcomings: errors associated with extrapolating from a small area survey to large area estimates, errors associated with extrapolating from the relatively long period of time necessary to gather and count fish over a region to real-time characteristics of the fish population, the relatively high cost of time and equipment for manual trawl surveys, the fact that some small fish species of interest are too small to be caught by the net mesh, and lastly, the fact that killing fish in the course of a trawl survey affects local fish populations which can sometimes be dangerously low.

Figure 1. First generation CAM Trawl Picture

 

As a result, NOAA (National Oceanic and Atmospheric Administration) and its National Marine Fisheries Service (NMFS) have been working for a number of years on a camera-based trawl (CAM-Trawl) technology to bring the power of image capture and facial recognition (loosely termed, Fishal Recognition) technology to best address the problem. Early generations of this CAM-Trawl system used the lengthy process of image capturing, storing images, and then removing the storage media for image analysis at some later time back at the lab.

In the latest generation of the CAM-Trawl system developed by the Fish Management Acquisition (FMA) Program, ADL Embedded Solutions worked closely with the NFMS Alaska Fisheries Science Center to make key improvements to the computer portion of the FMA CAM-Trawl system. These include the following. Upgrading to GeniCam-compliant vision platform to take advantage of the latest camera technology and image recognition algorithms. Upgrading to marine quality system enclosure with IP-67 rated ingress protection. Upgrading to a quad-core Intel Core i7 processor to enable real-time processing of image data. Design and building of a rugged small form factor system for mounting  flexibility and ease of storage and transportation. The resulting FMA computer solution from ADL has helped achieve all the stated goals for this project. Namely, real-time fish-count data analysis capability for NOAA marine researchers to aid in their fish conservation efforts is now a reality.

Figure 2. The housed ADL system

 

The new system includes an ADL main control computer shown at left and an ADL image acquisition computer on the right in figure 2.  System features include: stainless steel, water-proof (IP67) enclosures, Intel Core i7 processors, IP67-rated water-proof circular connectors with protective caps, LED activity lights for various functions, removable drive assemblies, and Topside Handrail Mounting Adapter. The ADL image acquisition computer (Vision Box) is responsible for: camera interface using up to 6x GigE ports, image capture, real-time image recognition using processing algorithms on the Intel Quad Core i7 processor, and image storage including metadata for data/time, fish identity, etc.

The ADL control computer typically resides in the wheelhouse. It will steadily monitor a number of external sensors including geo data, time, pressure sensors, RFID tag readings and will orchestrate one or more Vision Boxes based on sensor input. Remote power on/off, clock syncing, start/stop image acquisition, etc is all dictated by the ADL control computer in a one-to-many relationship.

The results for the new FMA system have been very positive after experimental trawl surveys in 2016. Work is now underway to standardize the key components of the new system as a means of promoting the adoption of this real-time Fishal Recognition FMA system on many more surveys in the near future.


Related


Defining IoT and Industry 4.0 with embedded systems

Embedded systems play a vital role in both characterizing and developing the Internet of Things as well as in creating new processes in automation. They address several requirements of IoT solutions a...

 

nVent Schroff at Embedded World 2019

The theme of the nVent Schroff booth at Embedded World 2019 was “Experience Expertise – Modularity, Performance, Protection and Design”. Join us as our experts give an overview of th...


Garz & Fricke Interview at Embedded World 2019 with Dr. Arne Dethlefs: We are strengthening our presence in North America

Through its US subsidiary, located in Minnesota, Garz & Fricke is providing support for its growing HMI and Panel-PC business in the USA and Canada while also strengthening its presence in North A...


SECO's innovations at embedded world 2019

In a much larger stand than in previous years, at embedded world 2019 SECO showcases its wide range of solutions and services for the industrial domain and IoT. Among the main innovations, in this vid...


Design and Manufacturing Services at Portwell

Since about two years Portwell is part of the Posiflex Group. Together with KIOSK, the US market leader in KIOSK systems, the Posiflex Group is a strong player in the Retail, KIOSK and Embedded market...


Arrow capabilities in design support

Florian Freund, Engineering Director DACH at Arrow Electronics talks us through Arrow’s transformation from distributor to Technology Platform Provider and how Arrow is positioned in both, Custo...


Arm launches PSA Certified to improve trust in IoT security

Arm’s Platform Security Architecture (PSA) has taken a step forward with the launch of PSA Certified, a scheme where independent labs will verify that IoT devices have the right level of securit...


DIN-Rail Embedded Computers from MEN Mikro

The DIN-Rail system from MEN is a selection of individual pre-fabricated modules that can variably combine features as required for a range of embedded Rail Onboard and Rail Wayside applications. The ...


Embedded Graphics Accelerates AI at the Edge

The adoption of graphics in embedded and AI applications are growing exponentially. While graphics are widely available in the market, product lifecycle, custom change and harsh operating environments...


ADLINK Optimizes Edge AI with Heterogeneous Computing Platforms

With increasing complexity of applications, no single type of computing core can fulfill all application requirements. To optimize AI performance at the edge, an optimized solution will often employ a...


Synchronized Debugging of Multi-Target Systems

The UDE Multi-Target Debug Solution from PLS provides synchronous debugging of AURIX multi-chip systems. A special adapter handles the communication between two MCUs and the UAD3+ access device and pr...


Smart Panel Fulfills Application Needs with Flexibility

To meet all requirement of vertical applications, ADLINK’s Smart Panel is engineered for flexible configuration and expansion to reduce R&D time and effort and accelerate time to market. The...


Artificial Intelligence

Morten Kreiberg-Block, Director of Supplier & Technology Marketing EMEA at Arrow Electronics talks about the power of AI and enabling platforms. Morten shares some examples of traditional designin...


Arrow’s IoT Technology Platform – Sensor to Sunset

Andrew Bickley, Director IoT EMEA at Arrow Electronics talks about challenges in the IoT world and how Arrow is facing those through the Sensor to Sunset approach. Over the lifecycle of the connected ...


AAEON – Spreading Intelligence in the connected World

AAEON is moving from creating the simple hardware to creating the great solutions within Artificial Intelligence and IoT. AAEON is offering the new solutions for emerging markets, like robotics, drone...


Arrow as a Technology Provider drive Solutions selling approach

Amir Sherman, Director of Engineering Solutions & Embedded Technology at Arrow Electronics talks about the transition started couple of years ago from a components’ distributor to Technology...


Riding the Technology wave

David Spragg, VP, Engineering – EMEA at Arrow Electronics talks about improvements in software and hardware enabling to utilize the AI capabilities. David shares how Arrow with its solutions is ...


ASIC Design Services explains their Core Deep Learning framework for FPGA design

In this video Robert Green from ASIC Design Services describes their Core Deep Learning (CDL) framework for FPGA design at electronica 2018 in Munich, Germany. CDL technology accelerates Convolutional...


Microchip explains some of their latest smart home and facility solutions

In this video Caesar from Microchip talks about the company's latest smart home solutions at electronica 2018 in Munich, Germany. One demonstrator shown highlights the convenience and functionalit...


Infineon explains their latest CoolGaN devices at electronica 2018

In this video Infineon talks about their new CoolGaN 600 V e-mode HEMTs and GaN EiceDRIVER ICs, offering a higher power density enabling smaller and lighter designs, lower overall system cost. The nor...


Analog Devices demonstrates a novel high-efficiency charge pump with hybrid tech

In this video Frederik Dostal from Analog Devices explains a very high-efficiency charge-pump demonstration at their boot at electronica 2018 in Munich, Germany. Able to achieve an operating efficienc...