Computer-on-Modules for Robotics & Industry 4.0 Automation

Industry 4.0 and the availability of technologies for collaborative robotics continuously increase the intelligence requirements in automation and robotics. Computer-on-Modules enable system engineers to adapt the computing cores to these evergrowing needs most efficiently by offering flexible scalability off-the-shelf.


By Knud Hartung, ADLINK                Download PDF version of this article


Collaboration is a major trend in automation today: Industry 4.0 systems require the controls of all the various machines and robots to collaborate with each other. On top of this demand for fully meshed control logic there is also a transition happening where collaboration is not only based on the exchange of digital information in real-time, but also on artificial intelligence and situational awareness empowered by deep learning technologies and powerful smart environmental sensors such as intelligent cameras.

With all these new elements of collaboration, vendors of traditional robotics and machine controls are facing significant changes; and those changes are happening fast. The collaborative robots market is forecast to grow at a high CAGR of 56.94% between 2017 and 2023 and is expected to be worth USD 4.28 Billion by 2023. This steep growth is attributed to high ROI rates and low prices, making collaborative robots more attractive for SMEs, as well as increasing industry investment in automation to support the Industry 4.0 evolution.

Engineers who want to be part of this innovation wave are facing manifold challenges. One major engineering task is the adoption of Industrial Internet technologies to enable the collaboration between the different systems. Here, the engineer task is to enable their systems to communicate in real-time with other systems; and with communication demands increasing as more and more controls need to coordinate with each other, bandwidth demands are now rising from traditional 100 Mbit or 1 Gbit Ethernet performance to 10 GbE offered by new fog servers. Those servers fulfill major higher-level analytics, decision, communication, and control tasks in Industry 4.0 environments. Protocol implementations for real-time communication such as a decentralized data distribution service (DDS) need to be managed here as well.

On top of this Industry 4.0 interaction between the machine and robot controls, the intelligence of each device needs to be ramped up to enable real collaborative devices. Artificial Intelligence (AI) technology is one of the drivers of the Industry 4.0 trend that is expected to grow at the highest rates. AI means dealing with simulation and implementation of human intelligence on a computer. For this intelligence, self-learning algorithms need to be implemented alongside all the supporting sensor technologies that deliver the relevant situational information that needs to be analyzed for making decisions. The critical challenge for manufacturers is turning legacy machines and robotic arms that are traditionally programmed to execute 100% predefined movements into such intelligent machines and robots. Drastically increased computing performance is required to support all the computing, measurement, motion control and machine vision capabilities that will ultimately enable customization of products and flexible mass production on the factory floor through collaborative intelligence. And looking ahead, this computing performance needs to be highly scalable to be able to fulfill future demands.

Figure 1. The rugged starter kits are tailored for Industry 4.0 and collaborative robotic applications and come complete with reference designs for various purposes

 

There is clearly a massive amount of work involved in implementing all these functionalities – not to speak of the additional IoT gateway requirements for OEMs to improve field deployment, maintenance services and on the fly deployment of new machine and robotic functionalities. So how can engineers fulfill all these new tasks under the high pressures from market dynamics where first to market is a major determining factor for gaining market share?

One lever is to utilize existing ecosystems and standards to streamline the engineering process by using off-the-shelf available frameworks and open source software such as real-time Linux or hypervisor technologies so that engineers can concentrate on the application development. Another lever lies in changing the way of designing the dedicated hardware. Traditionally, leading machine and robot manufacturers used to develop their own controller boards. However, with new generations of CPUs being launched at accelerated speeds and machine equipment needing to incorporate the latest functions to meet Industry 4.0 demands, manufacturers are forced to change their controller board designs more frequently. This requires time and leads to delays in passing certifications so ultimately results in increased time-to-market. To circumvent these problems, manufacturers need to start to evaluate the use of embedded Computer-on-Modules (COMs) for customizing their control boards. With these off-the-shelf available COMs, machine performance can be upgraded to the latest CPU with a simple module replacement. There is no need to redesign the entire control board, which helps to significantly accelerate the product development cycle.

The COM design model, which combines the core module and a customized carrier board, has the advantage of boosting flexibility. Yet there are further challenges to overcome. First of all, a COM is not a complete single board computer; it is the system core and controls peripheral applications via interfaces and specialized functionality on the carrier board. In the case of equipment malfunction, the added complexity may make it more difficult to identify whether the source of the problem lies in the carrier board, COM or peripheral cards. Therefore, without help from a team of experts, locating the root cause can be time consuming. In addition, manufacturers with ambitions to develop intelligent machine or robotics solutions tend to engage in projects that are diverse and often involve complex requirements such as firmware changes and BIOS customizations.

Figure 2. Thanks to their 10 GbE interfaces and massive PCIe support, the brand-new COM Express Type 7 Computer-on-Modules from ADLINK Technology are tailored for Industry 4.0 server and collaborative robotic applications

 

Support for multiple operating systems including Windows, Linux, RTOS and virtualization is also required so specific development kits are needed to ensure smooth development of both the carrier board and software. However, as many suppliers are outsourcing a large part of their development work to third-party vendors and have no plan to train their own software engineers, they lack the ability to solve problems independently and to promptly provide the necessary technical support.

A leading international robotic arm manufacturer faced the challenges described during its transition from internally designed controller boards to the adoption of the COM concept. ADLINK Technology comprehensive COM starter kits – specifically tailored to fulfill not only individual but all requirements for industrial automation and robotic applications, complete with reference designs – were able to eliminate most of the challenges of the customer. When the customer encountered difficulties during development, the technical team responded quickly and effectively to assist in addressing system integration issues, whether or not they were directly related to the COM. When necessary, highly trained ADLINK staff visited the customer location to find the root cause of the problem as it is the company goal always to provide professional support to customers during the entire development process. If module vendors have their own signal measurement laboratories, they can help customers also in measuring all computer input and output signal waveforms to ensure that COM design and manufacturing comply with all the required standards. Yet helping customers during the design-in process of a module is not the only service COM vendors can offer.

They can support them even more comprehensively by publishing complete design for manufacturing (DFM) verification principles for the product design-in stage. All those efforts aim to guarantee highest product compatibility and reliability as well as fastest time-to-market. Close collaboration with Intel is helping firms such as ADLINK to launch new COM products the day new processors for the embedded markets become available, so that OEM engineers can instantly upgrade their control systems with the very latest Intel processor technology, allowing really fast and also highly reliable time-to-market strategies.


Related


Fluffing the Cloud

The synergistic development aspect of electronic design was very apparent these past weeks at the APEC and Embedded World shows, as engineers from around the globe came together in San Antonio, Texas,...

Powerful graphics in squared form factor

Figure 1. The all-in-one eN-GXSOC has been designed and developed for 24/7 use in harsh industrial environments and utilizes an innovative passive cooling system. AMD graphics technology is ent...

Artificial Intelligence on the Edge

This article introduces UP AI Edge, a platform which is fully powered by Intel technology and integrates: Intel Apollo Lake-I CPU, Intel Cyclone 10 gx FPGA, and Intel Movidius Myriad 2 VPU (Video ...

 


Grammatech talks about the importance of software in engineering

In this video Mark Hermeling of Grammatech talks to Alix Paultre after the Embedded World show in Nuremberg about the importance of software verification for security and safety in electronic design. ...


Lattice Semi walks through their booth demos at Embedded World

In this video Lattice Semiconductor walks us through their booth demonstrations at Embedded World 2018. The live demonstrations include an operating IoT remote vehicle, a low-power network used for vi...


Maxim describes their latest security solution at Embedded World 2018

In this video Scott from Maxim Integrated describes their latest security solution at Embedded World 2018. In the live demo he shows the DS28E38 DeepCover Secure ECDSA Authenticator, an ECDSA public k...


Garz & Fricke at Embedded World 2018 - Embedded HMIs and SBCs “Made in Germany”

You are looking for a HMI-system or single components as touches, displays and ARM-based SBCs? Welcome at Garz & Fricke – the Embedded HMI Company! Our offering ranges from typical single co...


ECRIN Systems myOPALE: Remote Embedded Modular Computers

myOPALE™ offers disruptive technology to multiply capabilities of your next Embedded Computers in a smaller foot print thanks to PCI Express® over Cable interconnect, standard 5.25’&rs...


TechNexion rolls out embedded systems, modules, Android Things kits at Embedded World 2018

In this video John Weber of TechNexion talks to Alix Paultre about how the company helps its customers getting products to market faster. By choosing to work with TechNexion, developers can take advan...


Mike Barr talks cybersecurity

In this video Mike Barr, CEO of the Barr Group, talks to Alix Paultre about cybersecurity at the Embedded World conference in Nuremberg, Germany. Too many designers, even in critical spaces like milit...


Ted Marena of Microsemi talks about their scope-free on-chip debug tools

In this video Ted Marena of Microsemi talks about their scope-free on-chip debug tools with Alix Paultre at Embedded World 2018. SmartDebug tool works with the Microsemi FPGA array and SERDES without ...


Infineon demonstrates their iMotion motor control solution at Embedded World

In this video Infineon explains their latest  IMC100 series iMOTION motor control IC at Embedded World 2018 in Nuremberg. The device provides a ready-to-use solution for high-efficiency variable-...


Samsung goes over their new ARTIK IoT development system

In this video James Stansberry of Samsung talks to Alix Paultre about their ARTIK IoT development system at Embedded World in Nuremberg. The family of system-on-modules provide a complete, production-...


Cypress explains their latest low-power 32-bit Arm Cortex-M4 PSoC 6

In this video Allen Hawes of Cypress Semiconductor talks to Alix Paultre about their latest low-power 32-bit Arm Cortex-M4 PSoC 6, designed to provide a secure high-performance MCU for next-generation...