Computer-on-Modules for Robotics & Industry 4.0 Automation

Industry 4.0 and the availability of technologies for collaborative robotics continuously increase the intelligence requirements in automation and robotics. Computer-on-Modules enable system engineers to adapt the computing cores to these evergrowing needs most efficiently by offering flexible scalability off-the-shelf.


By Knud Hartung, ADLINK                Download PDF version of this article


Collaboration is a major trend in automation today: Industry 4.0 systems require the controls of all the various machines and robots to collaborate with each other. On top of this demand for fully meshed control logic there is also a transition happening where collaboration is not only based on the exchange of digital information in real-time, but also on artificial intelligence and situational awareness empowered by deep learning technologies and powerful smart environmental sensors such as intelligent cameras.

With all these new elements of collaboration, vendors of traditional robotics and machine controls are facing significant changes; and those changes are happening fast. The collaborative robots market is forecast to grow at a high CAGR of 56.94% between 2017 and 2023 and is expected to be worth USD 4.28 Billion by 2023. This steep growth is attributed to high ROI rates and low prices, making collaborative robots more attractive for SMEs, as well as increasing industry investment in automation to support the Industry 4.0 evolution.

Engineers who want to be part of this innovation wave are facing manifold challenges. One major engineering task is the adoption of Industrial Internet technologies to enable the collaboration between the different systems. Here, the engineer task is to enable their systems to communicate in real-time with other systems; and with communication demands increasing as more and more controls need to coordinate with each other, bandwidth demands are now rising from traditional 100 Mbit or 1 Gbit Ethernet performance to 10 GbE offered by new fog servers. Those servers fulfill major higher-level analytics, decision, communication, and control tasks in Industry 4.0 environments. Protocol implementations for real-time communication such as a decentralized data distribution service (DDS) need to be managed here as well.

On top of this Industry 4.0 interaction between the machine and robot controls, the intelligence of each device needs to be ramped up to enable real collaborative devices. Artificial Intelligence (AI) technology is one of the drivers of the Industry 4.0 trend that is expected to grow at the highest rates. AI means dealing with simulation and implementation of human intelligence on a computer. For this intelligence, self-learning algorithms need to be implemented alongside all the supporting sensor technologies that deliver the relevant situational information that needs to be analyzed for making decisions. The critical challenge for manufacturers is turning legacy machines and robotic arms that are traditionally programmed to execute 100% predefined movements into such intelligent machines and robots. Drastically increased computing performance is required to support all the computing, measurement, motion control and machine vision capabilities that will ultimately enable customization of products and flexible mass production on the factory floor through collaborative intelligence. And looking ahead, this computing performance needs to be highly scalable to be able to fulfill future demands.

Figure 1. The rugged starter kits are tailored for Industry 4.0 and collaborative robotic applications and come complete with reference designs for various purposes

 

There is clearly a massive amount of work involved in implementing all these functionalities – not to speak of the additional IoT gateway requirements for OEMs to improve field deployment, maintenance services and on the fly deployment of new machine and robotic functionalities. So how can engineers fulfill all these new tasks under the high pressures from market dynamics where first to market is a major determining factor for gaining market share?

One lever is to utilize existing ecosystems and standards to streamline the engineering process by using off-the-shelf available frameworks and open source software such as real-time Linux or hypervisor technologies so that engineers can concentrate on the application development. Another lever lies in changing the way of designing the dedicated hardware. Traditionally, leading machine and robot manufacturers used to develop their own controller boards. However, with new generations of CPUs being launched at accelerated speeds and machine equipment needing to incorporate the latest functions to meet Industry 4.0 demands, manufacturers are forced to change their controller board designs more frequently. This requires time and leads to delays in passing certifications so ultimately results in increased time-to-market. To circumvent these problems, manufacturers need to start to evaluate the use of embedded Computer-on-Modules (COMs) for customizing their control boards. With these off-the-shelf available COMs, machine performance can be upgraded to the latest CPU with a simple module replacement. There is no need to redesign the entire control board, which helps to significantly accelerate the product development cycle.

The COM design model, which combines the core module and a customized carrier board, has the advantage of boosting flexibility. Yet there are further challenges to overcome. First of all, a COM is not a complete single board computer; it is the system core and controls peripheral applications via interfaces and specialized functionality on the carrier board. In the case of equipment malfunction, the added complexity may make it more difficult to identify whether the source of the problem lies in the carrier board, COM or peripheral cards. Therefore, without help from a team of experts, locating the root cause can be time consuming. In addition, manufacturers with ambitions to develop intelligent machine or robotics solutions tend to engage in projects that are diverse and often involve complex requirements such as firmware changes and BIOS customizations.

Figure 2. Thanks to their 10 GbE interfaces and massive PCIe support, the brand-new COM Express Type 7 Computer-on-Modules from ADLINK Technology are tailored for Industry 4.0 server and collaborative robotic applications

 

Support for multiple operating systems including Windows, Linux, RTOS and virtualization is also required so specific development kits are needed to ensure smooth development of both the carrier board and software. However, as many suppliers are outsourcing a large part of their development work to third-party vendors and have no plan to train their own software engineers, they lack the ability to solve problems independently and to promptly provide the necessary technical support.

A leading international robotic arm manufacturer faced the challenges described during its transition from internally designed controller boards to the adoption of the COM concept. ADLINK Technology comprehensive COM starter kits – specifically tailored to fulfill not only individual but all requirements for industrial automation and robotic applications, complete with reference designs – were able to eliminate most of the challenges of the customer. When the customer encountered difficulties during development, the technical team responded quickly and effectively to assist in addressing system integration issues, whether or not they were directly related to the COM. When necessary, highly trained ADLINK staff visited the customer location to find the root cause of the problem as it is the company goal always to provide professional support to customers during the entire development process. If module vendors have their own signal measurement laboratories, they can help customers also in measuring all computer input and output signal waveforms to ensure that COM design and manufacturing comply with all the required standards. Yet helping customers during the design-in process of a module is not the only service COM vendors can offer.

They can support them even more comprehensively by publishing complete design for manufacturing (DFM) verification principles for the product design-in stage. All those efforts aim to guarantee highest product compatibility and reliability as well as fastest time-to-market. Close collaboration with Intel is helping firms such as ADLINK to launch new COM products the day new processors for the embedded markets become available, so that OEM engineers can instantly upgrade their control systems with the very latest Intel processor technology, allowing really fast and also highly reliable time-to-market strategies.


Related


Defining IoT and Industry 4.0 with embedded systems

Embedded systems play a vital role in both characterizing and developing the Internet of Things as well as in creating new processes in automation. They address several requirements of IoT solutions a...

 

Perfect Motion Control For the Networked World

We live in a physical world where everything is connected. Trinamic transforms digital information into physical motion with accessible, flexible, and easy to use toolkits putting the world’s be...


New High-Performance Serial NAND: A Better High-Density Storage Option for Automotive Display

The automotive requirements: speed, reliability and compatibility. Winbond's high-performance serial NAND Flash technology offers both cost and performance advantages over the SPI NOR Flash typica...


President Tung-Yi talks about Winbond

Winbond is a leading specialty memory solution provider with a wide rage of product portfolio. Owned technology and innovation are our assets for our industry and our customers. Winbond we are high qu...


New Memory and Security Technologies for Designers of IoT Devices

Internet of Things (IoT) edge nodes are battery-powered, often portable, and are connected to an internet gateway or access point wirelessly. This means that the most important constraints on new I...


Winbond TrustMe Secure Flash - A Robust and Certifiable Secure Storage Solution

Winbond has introduced the TrustMe secure flash products to address the challenge of combining security with advanced process nodes and remove the barriers for adding secure non-volatile storage to pr...


Ultra-Low-Power DRAM: A “Green” Memory in IoT Devices

Winbond is offering a new way to extend the power savings available from Partial Array Self-Refresh (PASR), which was already specified in the JEDEC standard by implementing a new Deep Self-Refresh (D...


Polytronics Thermal Conductive Board (TCB) at Electronica 2018

This video introduce the basic product structure, advantage, and application of Polytronics thermal conductive board (TCB). Polytronics exhibit wide range of circuit protection products and thermal ma...


Arrow and Analog Devices strategic partnership and collaborative approach to provide solutions for our customers.

Mike Britchfield (VP for EMEA Sales) talks about why Analog Devices have a collaborative approach with Arrow Arrow’s design resources are key, from regional FAEs in the field to online des...


WE MAKE IT YOURS! Garz & Fricke to present the latest HMIs and SBCs at Electronica 2018

Sascha Ulrich, Head of Sales at Garz & Fricke, gives you a quick overview about the latest SBC, HMI and Panel-PC Highlights at electronica 2018. Learn more about the SANTOKA 15.6 Outdoor HMI, the ...


Macronix Innovations at electronica 2018

Macronix exhibited at electronica 2018 to showcase its latest innovations: 3D NAND, ArmorFlash secure memory, Ultra Low Vcc memory, and the NVM solutions with supreme quality mainly focusing on Automo...


ams CEO talks about their sensor solutions that define the mega trends of the future

In this video Alexander Everke, ams’ CEO, talks to Alix Paultre of EETimes about their optical, imaging and audio sensor solutions in fast-growing markets – from smartphones, mobile device...


Intel accelerated IoT Solutions by Arrow

Arrow is showing Intel’s Market Ready Solutions in a Retailer shop with complete eco environment. From sensors via gateways into the cloud, combined with data analytics, the full range of Intel ...


CSTAR - Manufacturers of cable assembly from Taiwan

CSTAR was founded in 2010 in Taipei, Taiwan. Through years of experience, we are experts in automotive products, LCD displays, LCD TVs, POS, computers, projectors, laptops, digital cameras, medical ca...


NXP Announces LPC5500 MCU Series

Check this video to discover the new NXP microcontroller LPC5500, the target application and focus area. Links to more information: LPC5500 Series: World’s First Arm® Cortex® -M...


Molex Meets Solutions at Electronica

These are exciting times in the electronics world as Molex migrates from a pure connectors company to an innovate solutions provider. Solutions often start at the component level, such as the connecto...


Alix Paultre investigates Bulgin's new optical fiber rugged connector range at Electronica 2018

Alix Paultre interviews Bulgin's Engineering Team Leader Christian Taylor to find out more about the company's new range of optical fiber connectors for harsh environments. As the smallest rug...


Cypress MCU and Connectivity are the best choice for real-world IoT solutions.

Cypress’ VP of Applications, Alan Hawse, explains why people should use Cypress for their IoT connectivity and MCU needs. Cypress wireless connectivity and MCU solutions work robustly and sea...


Chant Sincere unveils their latest High Speed/High Frequency connection solutions at Electronica 2018

Chant Sincere has been creating various of product families to provide comprehensive connection solutions to customers. USB Series Fakra Series QSFP Series Metric Connector Series Fibro ...


Addressing the energy challenge of IoT to unleash billions of devices

ON Semiconductor introduces various IoT use cases targeted towards smart homes/buildings, smart cities, industrial automation and medical applications on node-to-cloud platforms featuring ultra-low po...


ITECH, world leading manufacturer of power test instruments, shinned on electronica 2018

ITECH, as the leading power electronic instruments manufacturer, attended this show and brought abundant test solutions, such as automotive electronics, battery test, solar array simulator, and electr...


ITECH new series give users a fantastic user experience

ITECH latest series products have a first look at the electronics 2018, such as IT6000B regenerative power system, IT6000C bi-directional programmable DC power supply, IT6000D high power programmable ...


SOTB™ Process Technology - Energy Harvesting in Embedded Systems is Now a Reality

Exclusive SOTB technology from Renesas breaks the previous trade-off between achieving either low active current or low standby current consumption – previously you could only choose one. With S...


Power Integrations unveils their new motor control solution

In this video friend of the show Andy Smith of Power Integrations talks to Alix Paultre from Aspencore Media about their new BridgeSwitch ICs, which feature high- and low-side advanced FREDFETs (Fast ...


Panasonic talks about their automotive technology demonstrator

In this video Marco from Panasonic walks Alix Paultre of Aspencore Media through their automotive technology demonstrator at electronica 2018. The demonstrator highlights various vehicle subsystems an...