How Flash Memory ICs can support the requirements of Automotive functional safety

In ADAS, as well as in the instrument cluster and elsewhere, Flash memories are nowadays a component in Automotive systems which are safety-critical.  Therefore OEMs are starting to demand a new breed of Flash ICs which can support the requirements of functional safety design at the system level better than previous generations of devices.

By Anil Gupta, Technical Executive, Winbond,

NOR Flash has been a dependable technology in vehicles for many years, and today is used in various automotive systems, including the instrument cluster and in infotainment and telematics systems (see Figure 1). In these applications, this non-volatile memory provides storage capacity for application code, offering the advantages of reliable operation and Read speed fast enough to support Execute-in-Place (XiP), in which a host processor runs code directly from Flash, bypassing external DRAM.

NOR Flash is also playing an important role in emerging implementations of the ADAS (Advanced Driver Assistance Systems) concept, which in cars available today is already performing semi-autonomous highway-driving functions such as adaptive cruise control and lane-keeping. The pace of development in autonomous driving technology is extremely fast, and so in the next few years more and more of a vehicle’s activity will be controlled by electronics systems containing Flash.

In ADAS, as well as in the instrument cluster and elsewhere, Flash is a component in systems which are safety-critical: any uncontrolled failure of such a system would have the potential to render the vehicle unsafe or uncontrollable. To manage and minimise the risk of systems failing to operate as specified, the automotive industry has implemented the ISO 26262 Functional Safety standard, which:

  • imposes a requirement at the design stage to perform rigorous analysis of the ways in which a system’s designed functions can fail
  • specifies very low maximum failure rates for complete systems
  • requires systems to have the ability to detect functional failures reliably and quickly
  • requires systems to put in place robust means to survive safely, and recover from, any foreseeable functional failure

Fig. 1: the virtual instrument cluster in a 2014 Audi TT. NOR Flash is widely used to enable instant display of essential cluster information at start-up. (Image credit: Robert Basic under Creative Commons licence.)

Automotive systems OEMs are therefore starting to demand a new breed of Flash ICs which can support the requirements of functional safety design at the system level better than previous generations of devices. This article studies the mode of operation of conventional NOR Flash ICs, and explains the features that new automotive serial Flash products will need to offer if they are to fully support system designers’ efforts to comply with the ISO 26262 standard.

These functional safety features will likely be seen both in serial NOR Flash – the Flash memory type most often used today in embedded systems for boot code storage – and in Single Level Cell (SLC) NAND Flash. Serial NAND is in fact a valid alternative to NOR Flash for code storage in applications that do not require a high number of Program/Erase cycles, and that do not need to implement XiP. Winbond’s SLC NAND technology is built in a 46nm process, which offers proven high quality and is preferable in functional safety applications to serial NAND products fabricated at new, smaller geometries. It also offers data retention periods comparable to those of 55-65nm NOR Flash.

The advantage of serial NAND is its inherently lower cost – a NAND Flash bit cell is four times smaller than that of a NOR Flash cell. Supplied by Winbond with an on-board Error Correcting Code (ECC) engine and supporting high-speed continuous/sequential Read capability across page and block boundaries, serial NAND is now being seriously considered by designers of automotive functional safety applications alongside the NOR Flash which is the subject of this article.

Exposing diagnostic data to view

It’s important to state that NOR Flash memory technology is very reliable, and devices’ operating lifetime is highly predictable. NOR Flash ICs have proved their qualities in the field, and automotive OEMs’ preference for the technology is based on experience of its use in millions of vehicles on the road today. For perspective, the ISO 26262 standard specifies reliability and other parameters in four ‘ASIL’ grades (Automotive Safety Integrity Level). The most stringent grade, ASIL-D for the most safety-critical systems such as steering or brakes, sets a maximum system-level failure rate of <10 FIT (Failure In Time) – a measure of the failure rate per billion device-hours (see Figure 2). At the level of individual components such as a NOR Flash IC, this calls for a maximum failure rate of far below 10 FIT.






SPF (Single Point fault) Metric

Not Applicable

> 90%

 > 97%

 > 99%

LF (Latent Fault) Metric

Not Applicable

 > 60%

 > 80%

 > 90%

Failure rate





FIT (failure in time)

< 1,000 FIT

< 100 FIT

< 100FIT

< 10 FIT

Fig. 2: minimum detection rates for single-point and latent faults, and maximum failure rates as specified by the ISO 26262 standard

Nevertheless, automotive manufacturers’ ISO 26262 compliance efforts call for a way to identify any fault that could theoretically still occur in a NOR Flash IC. And at the time of writing (May 2017), NOR Flash ICs are supplied to automotive OEMs as a memory ‘black box’. Functions which maintain data integrity and data retention are, in conventional devices, inaccessible to the user. This closed operation is in conflict with the principles of functional safety, which require the host system to monitor component parts for faults, or for irregular behaviour that indicates a fault is likely to occur, and to implement counter-measures aimed at maintaining proper functioning.

This means that NOR Flash ICs intended for use in ISO 26262-compliant systems must make diagnostic data available to the host controller, and provide ways in which the host can modify the IC’s operation in response to a heightened risk of failure indicated by the data.

Two main features of a NOR Flash IC provide these data:

  • the ECC engine, which maintains data integrity by detecting and correcting bit errors in Read operations
  • a User Mode which enables periodic testing of the ECC engine’s operation

How ECC data support functional safety operations

In conventional NOR Flash ICs, the ECC engine operates in the background, detecting and correcting bit errors with multi-byte granularity silently, without alerting the host controller. in fact, however, these ECC data may be used to facilitate functional safety compliance in various ways. An ECC engine is capable of correcting single-bit errors (when there is only a single bit variance between the main data bit and the parity bits); and of detecting (but not correcting) double-bit errors.

By providing a status register to the host controller, a NOR Flash device can indicate whether the most recent Read operation had one of three possible outcomes:

  • good data with no error correction required
  • good data after error correction
  • bad data that were not able to be corrected

This ‘after the fact’ information can be used to help maintain long-term data integrity, as we shall see. But ISO 26262 requires automotive systems to detect faults when they occur, and to deploy counter-measures immediately. In new automotive NOR Flash ICs from Winbond, real-time error information may be provided via a dedicated Error pin. This pin may be asserted to indicate the exact location of uncorrectable data. There is also an option for the user to select whether the Error pin will indicate corrected single-bit errors, or detected and uncorrectable double-bit errors.

The host may then use the information from the status register, from the Error pin, or from both, to build an error register – effectively a ‘map’ of the NOR Flash array, logging the locations of bit errors. The host may then set a threshold, so that when the number of errors occurring at any one location, such as a particular block, exceeds the threshold, that location is ‘retired’ from the memory. This is a sensible precautionary measure: the repeated occurrence of corrected single-bit errors in a particular block of memory cells might indicate that the block is weak, and at risk of premature failure.

Measures to identify a latent failure

So far, the measures described are concerned with the handling of single-point faults, for which the ISO 26262 standard specifies minimum detection rates for each ASIL grade. But the standard also requires automotive systems to detect ‘latent faults’. A latent fault is a fault which does not violate functional safety requirements on its own, but which can violate them in conjunction with a second fault.

In a NOR Flash IC, there is potential for such a latent fault – a malfunctioning ECC engine is an example. In normal operation, NOR Flash technology is highly reliable and rarely requires error correction. So as long as an ECC engine failure does not cause it to wrongly correct good bits, the failure would normally go unnoticed. But when a single bad bit goes uncorrected because of the failed ECC engine (a latent fault), the two faults in combination pose a risk to functional safety.

To enable detection of a latent ECC engine fault, Winbond’s automotive NOR Flash ICs provide special User Mode and ECC Encoder Read commands: this enables the user to inject a main data pattern into the memory, and to read back from the ECC engine the main data and the parity data that it generates. If the parity data are incorrect, the ECC engine can be flagged as faulty.

Likewise, the User Mode may be used to check ECC decode operation: in User Mode, the user loads main data and parity data into the ECC engine, and with a special ECC Decoder Read command the main data may be read back. Single-bit and double-bit errors may be introduced into the main data and parity data to check whether the ECC engine performs single-bit error correction and double-bit error detection properly. Winbond’s recommendation is that this ECC engine check should be performed every time the system powers up.

New functional safety features available in production parts

In response to demand from manufacturers of ADAS products and other automotive systems, Winbond is now integrating the functional safety features described above into a new family of automotive NOR Flash products. The Quad 3V family, featuring a maximum 80MB/s data transfer rate, is available for sampling in a density of 256Mbits as of May 2017. A 512Mbit part (two stacked 256Mbit dies) will be available in the second half of 2017. In 2018, Winbond will release a 512Mbit part with a monolithic die, and a 1Gbit part made from two 512Mbit stacked dies.

Winbond’s Octal 1.8V family, featuring a data rate of more than 300MB/s, will be available in densities from 256Mbits, with samples planned for late 2018. Proliferation into other densities will follow later. Winbond also offers Serial NAND products with functional safety features: as of May 2017, products are available for sampling at densities of 512Mbits, 1Gbit and 2Gbits (made of two stacked 1Gbit dies).

Winbond Serial NAND products, such as the 1Gbit W25N01GV, support functional safety compliance by providing information to a status register showing whether data read out were good without ECC, good with ECC, or uncorrectable. The Serial NAND page size is 2kbytes and 1-bit embedded ECC is offered at the sector level (512 bytes). This means that up to 4-bit correction can be performed on a 2kbyte page. Winbond Serial NAND also offers the ability to read the location of a failed page when prompted by an additional user command.

Fig. 3: the error log in Winbond Serial NAND helps identify potential weak cells or blocks

By providing both SPI NOR and Serial NAND solutions for functional safety applications, Winbond offers the user the freedom to select the appropriate Flash memory type for the requirements of their design.

For more product information, please visit Winbond Code Storage Flash Memory


Slimming program for medical operating devices

Operating devices in the medical sector are not only subject to strict controls and requirements. Nowadays design demands are becoming more and more important for developers of medical HMI devices. De...


DIN-Rail Embedded Computers from MEN Mikro

The DIN-Rail system from MEN is a selection of individual pre-fabricated modules that can variably combine features as required for a range of embedded Rail Onboard and Rail Wayside applications. The ...

Embedded Graphics Accelerates AI at the Edge

The adoption of graphics in embedded and AI applications are growing exponentially. While graphics are widely available in the market, product lifecycle, custom change and harsh operating environments...

ADLINK Optimizes Edge AI with Heterogeneous Computing Platforms

With increasing complexity of applications, no single type of computing core can fulfill all application requirements. To optimize AI performance at the edge, an optimized solution will often employ a...

Synchronized Debugging of Multi-Target Systems

The UDE Multi-Target Debug Solution from PLS provides synchronous debugging of AURIX multi-chip systems. A special adapter handles the communication between two MCUs and the UAD3+ access device and pr...

Smart Panel Fulfills Application Needs with Flexibility

To meet all requirement of vertical applications, ADLINK’s Smart Panel is engineered for flexible configuration and expansion to reduce R&D time and effort and accelerate time to market. The...

AAEON – Spreading Intelligence in the connected World

AAEON is moving from creating the simple hardware to creating the great solutions within Artificial Intelligence and IoT. AAEON is offering the new solutions for emerging markets, like robotics, drone...

ASIC Design Services explains their Core Deep Learning framework for FPGA design

In this video Robert Green from ASIC Design Services describes their Core Deep Learning (CDL) framework for FPGA design at electronica 2018 in Munich, Germany. CDL technology accelerates Convolutional...

Microchip explains some of their latest smart home and facility solutions

In this video Caesar from Microchip talks about the company's latest smart home solutions at electronica 2018 in Munich, Germany. One demonstrator shown highlights the convenience and functionalit...

Infineon explains their latest CoolGaN devices at electronica 2018

In this video Infineon talks about their new CoolGaN 600 V e-mode HEMTs and GaN EiceDRIVER ICs, offering a higher power density enabling smaller and lighter designs, lower overall system cost. The nor...

Analog Devices demonstrates a novel high-efficiency charge pump with hybrid tech

In this video Frederik Dostal from Analog Devices explains a very high-efficiency charge-pump demonstration at their boot at electronica 2018 in Munich, Germany. Able to achieve an operating efficienc...

Microchip demonstrates a flexible motion control platform at electronica

In this video Marcus from Microchip explains a motion control demonstration at their booth at electronica 2018 in Munich, Germany. The demonstration underscores the ability of the solution to rapidly ...

Infineon goes over their latest SiC devices for automotive systems

In this video an Infineon engineer goes over their latest Silicon Carbide (SiC) devices for automotive systems at electronica 2018 in Munich, Germany. Among the devices described are an inverter for a...

Bertrand Lombardo of Honeywell, Sensing requirements of IoT

Bertrand Lombardo, Sales director for EMEA for Honeywell SIOT discusses future sensing trends in relation to IoT at Electronica 2019 with Alix Paultre. Links to more information: Dynamic Hone...

Analog Devices updates their Silent Switcher technology

In this video an FAE from Analog Devices explains the latest version of their Silent Switcher technology, which addresses noise issues in power systems. He describes a live demonstration in their boot...

Western Digital talks about their automotive-grade memory solutions

In this video Martin Booth from Western Digital talks about the company's memory solutions specifically designed for automotive applications and the harsh environments involved. Systems such as ne...

Picotest demonstrates their latest advanced power test solutions

In this video Steve Sandler from Picotest shows us two of the company's latest test solutions at electronica 2018 in Munich, Germany. The first demo is of a micro-Ohm-resolution power rail measure...

STMicro describes their latest smart 48V DC brushless motor driver board

In this video an engineer from STMIcroelectronics explains a motor-driver board setup based on their L9907 smart power device at electronics 2018 in Munich, Germany. Based on BCD-6s technology. the de...

Microchip shows their newest PolarFire FPGAs at electronica 2018

In this video Microchip shows a one of the demos highlighting the capabilities of their newest low-power PolarFire FPGAs at electronica 2018 in Munich, Germany. The demonstration shown here is a kit f...

Western Digital discusses their memory solutions for Cloud-enabled devices

In this video Ze'ev Paas of Western Digital talks to Alix Paultre of Aspencore Media about their latest memory products at electronica 2018 in Munich, Germany. Depending on the application space, ...

Picotest explains a couple of power test systems at electronica 2018

In this video Steve Sandler from Picotest explains a couple of his power test systems at electronica 2018 in Munich, Germany. The first demonstration shows a micro-Ohm measurement system, and the seco...